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Non-Technical Summary 

Introduction 

Hull and East Riding of Yorkshire are vulnerable to flooding. The water organisations in the 

region, many of whom collaborate through the Living with Water Partnership (LWWP, including 

Hull City Council, East Riding of Yorkshire Council, Environment Agency, and Yorkshire 

Water), all manage drainage and related assets that interact during flood events.  Each 

organisation currently records and stores telemetry data from their assets for their individual 

use, with some limited sharing of data between partners taking place but not in real-time. 

Believing that bringing this data together and combining it with data-driven modelling tools 

would create opportunities for more efficient ways of working, this project began as a 

collaboration between iCASP, LWWP and University of Sheffield (UoS). 

The aim of the project was to integrate the data from various monitors within LWWP across 

Hull and East Riding of Yorkshire, and to use advanced analytical methods to better 

understand existing relationships in the system, with a goal of proposing a methodology for 

water level forecasting which can be used as an early warning tool. To realise the aim, four 

primary tasks were performed: 

• Data collections from partners: More than 150 time-series data sets of rainfall, water 

level, and groundwater level were collected.  

• Data cleansing, filtering, and combining: Automated systems were designed to cleanse 

and combine the data. This process included filtering anomalies and unwanted noise, 

removing high frequency spikes, smoothing (if necessary), filling the gaps, resampling, 

synchronising, and deseasonalising time-series. 

• Exploration of relationships within data: Machine learning (ML) algorithms were applied 

to explore relationships between different components of the system. Many 

combinations of parameters (e.g., total precipitation, rainfall maximum intensity, water 

level, groundwater level, etc.) and locations (e.g., water level monitors at open channel 

streams and sewer network) were tested and major relationships were identified. Two 

locations were selected as case studies for predictive modelling. 

• Development of predictive models to be used as early-warning tools: Based upon the 

results from the initial exploration of relationships, several candidate types of ML 

predictive models were developed, tested, and refined to select the best performing 

algorithm and required data inputs for an early-warning tool. 

Project Approach 

Given the complexity of the drainage system in the LWWP area, which includes multiple 

surface water features interacting with buried drainage networks, a goal of this project was to 

explore whether data-driven analysis could provide insights into the system performance and 

dynamics that are otherwise difficult to model mechanistically. Initial work to explore the 
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relationships in the combined data used a type of ML algorithm which is an ‘unsupervised 

learning approach’ meaning that no predefined relationships are specified within the analysis.  

Various combinations of parameters (total precipitation, maximum rainfall intensity, water 

level, groundwater level, etc) in various locations were analysed to look for trends and 

relationships. The findings from this data exploration task, including insights into the 

relationships, choice of input/output parameters, and potential time-lags between rainfall and 

water level in the system were used as a basis for development of predictive modelling 

algorithms. 

The predictive models were designed based on a different type of ML known as a ‘supervised 

learning approach’. In this approach, input and output parameters are specified in advance, 

thus allowing for the relationships between those parameters to be quantified (learned), and 

the output can be predicted for unseen (future) data. Water level a few hours in the future (in 

an open channel stream or a trunk sewer) was selected as the output that the model is 

predicting. A combination of various parameters from the preceding several hours including 

total precipitation, water level in the same watercourse, water level in an upstream 

watercourse, gradient of water level profile, and mean groundwater level used as input 

parameters. Sensitivity analyses were performed in order to find the best combination of input 

parameters, the best ‘observation window’ sizes (i.e., how far in the past the input parameters 

should be determined), and the most optimal ‘prediction window’ or ‘forecast horizon’ (i.e., 

how far in the future the water level can be forecasted with a reasonable accuracy). 

Results 

The developed model was tested for two locations in the drainage network; an open channel 

watercourse, Setting Dyke, and a trunk sewer in Hull West (at the monitoring location LM03). 

The major findings were as below. 

• The model can generate forecasts for individual locations based upon historical rainfall, 

water level, slope of water level change, and groundwater level data. 

• The farthest in the future that water level can be predicted with a good accuracy is 3 to 

4 hours for Setting Dyke (open channel) and 45 to 60 minutes for LM03 (sewer).  

• Combining input data from several locations, e.g. upstream open channels and 

groundwater level, improves the forecast horizon for the sewer network. 

This project was carried out with close contact with project partners. Several meetings were 

held between the UoS team, LWWP members, and iCASP; extensive email communication 

was done for data collection; and three workshops were held with members of the project 

partners as well as external organisations such as Stantec and University of Hull. 

The outcomes of the project are as follows: 

• A better understanding of the existing telemetry network across the study area was 

achieved, including insights into the best locations for monitoring and gaps in coverage. 
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• The results of the data exploration provided clarity on the variability of data in quality and 

physical parameters. 

• The data-driven approach was able to identify important relationships between network 

elements such as that the water level in both open channels and sewer network show 

stronger linkage with total precipitation rather than maximum rainfall intensity; and that 

the water level in the sewer network responds much faster to rainfall. 

• Overall, application of data analytics like those demonstrated will make better use of 

current monitoring systems and provide evidence to support future investments. 

• It is possible to improve flood resilience in the area through application of an early 

warning tool. 

• The value of combining and sharing data among the different LWWP partners was 

strongly demonstrated along with the value of data-driven methods to help understand 

the behaviour of complex systems. 

Applications and recommendations 

The output of the project is a predictive modelling approach with developed models coded in 

MATLAB. Since the predictive model uses past values of data to predict water level in the 

future, it can thus be used as an early warning tool. The application of these models in real-

time water level forecasting requires training of the model using existing historical data 

(updated in real-time), and then input of values for rainfall, water level, and groundwater level 

to predict water level in a watercourse a few hours in the future. For replication of the approach 

beyond the two tested locations evaluated in this project, individual site models will need to 

be trained and tested based on their local system data, as the relationships discovered for 

LWWP in this project will not be universally applicable. 

Besides, for applications beyond LWWP, to be investigated in the future studies, the following 

recommendations are proposed: 

• Data collection in a more systematic way, ideally in unified measuring systems. 

• Thorough sensitivity analysis on the hyperparameters of the ML algorithms. 

• Incorporating flood risk into the model to estimate risk of exceedance of water level 

triggers. 

By performing these recommendations, the developed system can then be used for more 

informed decision makings. This can help more proactive interventions at operational levels 

(e.g., identification of immediate risks to the system) and strategic levels (e.g., assessment 

of large areas for overall risk of water level exceedance above defined thresholds under 

typical high-rainfall conditions).
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1. Introduction  

According to a survey1 conducted by the University of Hull, Hull and East Riding of Yorkshire 

are very vulnerable to flooding and were severely affected by major flood events in 2007 and 

2013. In June 2007, surface water flooding in Hull damaged approximately 8800 residential 

properties, 1300 businesses and 91 out of 99 schools. In December 2013, a storm surge 

flooded over 400 properties in Hull and East Yorkshire. Therefore, Hull City Council (HCC), 

Yorkshire Water (YW), the Environment Agency (EA) and East Riding of Yorkshire Council 

(ERYC) have formed the Living with Water (LWW) partnership to work together to reduce 

vulnerability to flooding and increase resilience in Hull through infrastructural projects and at 

a community level. 

Currently, each of the LWW partnership organisations (HCC, ERYC, EA and YW) record and 

hold telemetry data from their assets in Hull and the surrounding region, something that is 

replicated throughout the UK. Each organisation uses this data for their own purposes and 

responds on an individual basis. The LWW partnership believes that by better utilising this 

data there are opportunities for more collaborative and efficient ways of working. Therefore, 

in this project, we have brought together data sets from different organisations, combined 

them, and used advanced Machine Learning (ML) methods to highlight relationships within 

the data, and develop predictive models to be used as ‘early warning’ tools using data that is 

already available. These models will predict water level in watercourses using historical data 

of rainfall, water level and groundwater level. Additional uses of the analysis will highlight 

opportunities for further monitoring and data collection as well as provision of public 

information. 

2. Aims and Objectives  

As mentioned above, the aim of the project is to integrate the data from the various monitors 

within LWW partnership and to use advanced analytical methods to better understand existing 

relationships among the parameters, with a goal of improving operational performance with 

this knowledge. The tasks performed in the project are as below. 

1- data collection from partners 

2- data cleansing, filtering and combining 

3- exploration of relationships within data 

 
1 Hull Household Flooding Survey 2018, Energy and Environment Institute, University of Hull, (online) available 
at www.hull.ac.uk/editor-assets/docs/hull-household-flooding-survey.pdf, accessed on 15 April 2021. 

http://www.hull.ac.uk/editor-assets/docs/hull-household-flooding-survey.pdf
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4- development of predictive models to be used as early-warning tools 

In the following sections, some details of analysis, results and findings corresponding to the 

objectives of the project are presented in Sections 3 to 7; then in Section 8, some 

recommendation regarding how to implement the model and replicate it for other areas will be 

provided; and finally, in Section 9, the overall summary and conclusions are presented with 

recommendations for future studies. 

3. Data Collections from Partners 

LWW partnership organisations provided more than 150 time-series of rainfall, water level and 

groundwater level data from monitoring stations across Hull and East Riding of Yorkshire. The 

water level data includes water level in open channel watercourses all around the East Riding 

of Yorkshire as well as trunk sewers in the city of Hull. A full list of data provided by project 

partners is presented in Appendix A, and a subset of data used in the analysis presented in 

this report is shown in Table 1. Note that the whole dataset presented in Appendix A were 

looked into, most of them were cleansed, but not all of them were used in the analysis due to 

the issues discussed below. Also note that the list presented in Table 1 shows only the ones 

employed for the analysis reported here, while a part of analysis is not presented in this report 

for the sake of brevity. 

Table 1: A list of a subset of data which is used in the analysis presented in this report. For a 

full list of data collected from project partners see Appendix A. 

ID Type Location/Tag Easting Northing Organisation 

TS1 Rainfall Cottingham 504791 434188 EA 

TS2 Open channel water level Hessle Western Drain 503295 427583 EA 

TS3 Open channel water level Setting Dyke (National Ave) 506692 430535 EA 

TS4 Groundwater level Cottingham Willerby Hill 502281 431806 EA 

TS5 Groundwater level Cottingham North House 505000 435000 EA 

TS6 Open channel water level Atwick Village Drain 518940 450847 ERYC 

TS7 Open channel water level Bilton 517221 432531 ERYC 

TS8 Open channel water level Plaxton Bridge 506611 436548 ERYC 

TS9 Open channel water level Skirlaugh 514217 439770 ERYC 

TS10 Open channel water level Astral Close Screen 503670 427320 ERYC 

TS11 Sewer water level Swanland 500433 427678 YW 

TS12 Sewer water level Dawson House 508363 431688 YW 

TS13 Sewer water level Hull West (LM02) 506563 431909 YW 

TS14 Sewer water level Hull West (LM03) 509415 429239 YW 

TS15 Sewer water level Hull East (LM04) 510791 429472 YW 

TS16 Sewer water level Hull East (LM05) 512969 430919 YW 
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The data is not uniform in terms of duration and frequency of measurement, continuity, etc. 

For example, the data from most of the YW rainfall gauges has a frequency of one sample per 

day which make them insufficient for the analysis; while the data from an EA rainfall gauge in 

Cottingham (TS1 in Table 1) has a time interval of 15 minutes and a measurement duration of 

about 35 years which makes it the most useful rainfall data for our analysis. The EA 

groundwater level data also lacks sufficient sampling rate in most of the cases. Besides, in 

many cases, there are issues such as that data resolution is varying over time, there are large 

gaps in the data, the duration of data is not sufficient, the amount of unwanted noise and high 

frequency spikes is large so that the data cannot be cleansed, and so on. 

Figure 1 presents the monitoring location and type of data used in this report (see Table 1); 

and Figure 2 shows duration (length of time over which data is measured) and resolution 

(average number of samples per day) of this data. For instance, rainfall at Cottingham (TS1 

in Table 1) has large duration and good resolution, groundwater level at Cottingham North 

House (TS5) has a relatively large duration but its resolution is poor, and water level at Astral 

Close Screen (TS10) is poor in terms of both duration and resolution. 

 

Figure 1: Location of monitoring stations of the data used in the analysis presented in this 

report (see Table 1). 

According to the issues with the raw data discussed above, the data needs filtering and 

cleansing before being used in the ML analysis. In addition, the data from different sources 

need to be organized and combined into a single dataset that can be employed by the ML 
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models for exploring relationships between different elements of the system. The process that 

is used for filtering, cleansing and combining data is demonstrated in the next section. 

 

Figure 2: duration (left) and resolution (right) of the data used in the analysis presented in 

this report (see Table 1). Duration denotes the length of time over which data is measured 

at a monitoring station in months, and resolution denotes the average number of measured 

values per day. 

4. Data Cleansing and Combining 

Cleansing data includes all or some of the following processes on the time-series. 

a. Removing spikes and unwanted noise 

b. Filling gaps  

c. Smoothing  

d. Removing seasonality 

e. Resampling 

An automated system is designed in MATLAB 2019b to perform all these processes 

automatically since the dataset is very large and manual removal of anomalies, 

filtering/smoothing, etc. is not practical. High frequency spikes (which could be due to 

Instrumental errors) are considered as outliers and are filtered out; and if there is unwanted 
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noise in the time-series, it is filtered or smoothed using ‘medfilt1’ and ‘smooth’ functions in 

MATLAB R2019b. Figure 3 shows an example of removing spikes from and filtering a water 

level time-series (TS7 in Table 1), where blue line shows the raw data and red line shows the 

filtered time-series. For some of the analysis (presented in Section 6) seasonality of data is 

also removed. If there are unwanted seasonal components in the time-series, they are firstly 

modelled using curve-fitting or smoothing methods. The time-series is split into a number of 

segments and then at each segment polynomial curve fitting or smoothing functions are 

applied and then by combining the segments the seasonality is modelled and then removed. 

Figure 4 shows an example of this process for a water level time-series (TS6 in Table 1), 

where blue, green, and red lines show data (raw or filtered), seasonal component, and 

deseasonalised data, respectively. The output (red line) in this case represents changes in 

water level from the base value (green line) to water level (blue line). 

  

Figure 3: An example of removing high frequency spikes from an open channel water level 

time-series (TS7 in table 1). Blue and red lines show raw and filtered data, respectively. 

Another issue in the data is that due to being collected from different sources and data types 

(rainfall, water level, groundwater level, etc.), the frequency or sampling rate of data is not the 

same for all time-series. Therefore, they first need to be resampled at a certain frequency to 

be combined before being used in the analysis. For the predictive models, the higher the data 

frequency is (i.e., the smaller the time interval is), the higher the resolution/accuracy of the 

predictions can be achieved. However, it is not possible to resample the data at a very large 

frequency as we wish, in other words, we are limited to a certain range. This is because on 

the one hand, the smallest time interval of the existing rainfall data is 15 minutes, and on the 

other hand, there are time-series with very large time intervals which cannot be resampled to 

very high frequencies without losing information. For instance, the data from many rainfall 

gauges in the region has frequencies of around one sample per day, and if we want to use 

them for prediction of water levels with frequencies of around, for example, one sample per 

hour, we will then need to interpolate rainfall values to fill the one-day gaps between each two 
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successive points in the time-series. But this is not ideal for such data since rainfall events are 

often in the order of several hours and by performing such interpolation, we will still lose many 

of the events. However, for some other time-series, such as groundwater level data, 

interpolation between two values with a time interval of even a few days is still OK since 

groundwater level often changes very slowly, and thus we will probably not lose any 

meaningful variations between the two successive points in the data. 

 

Figure 4: An example of removing seasonality from a water level time-series (TS6 in table 

1). Blue, green, and red lines show data (raw or filtered), seasonal component, and 

deseasonalised data, respectively. 

In the present analysis, rainfall data from a gauge in Cottingham (TS1 in Table 1) is used as 

the only rainfall input since it is measured at a frequency of one measurement per 15 minutes 

and has been measured for a period of 35 years since 1985. Therefore, this time-series is set 

as the reference time-series and all the other data (water levels, groundwater levels, etc.) are 

synchronised to it. That means frequency of the input data fed into the ML models is 15 

minutes. Meanwhile, water level data with low frequencies (lower than one measurement 

every one hour, which makes them not suitable for resampling by interpolation) are not 

employed in the analysis. 

5. Machine Learning Introduction 

The present data is sparse in space and time, and data linkages across functions are lacking. 

Therefore, data-driven machine learning, which map inputs to outputs without attempting to 

accurately model underlying processes, seems as one of the most suitable choices for this 

study. Thanks to the availability of historical data recorded by the LWWP organisations, and 

due to the lack of detailed knowledge on the complex physical processes in the system, data-

driven models are developed in this study for exploration of such relationships and trends in 
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the data and then predictions of water level in open channel watercourses and trunk sewers 

in Hull. 

Unlike the traditional statistical methods that work based on a priori assumptions about data 

(such as linear and repeatable trends) and that are therefore suitable only for small datasets 

with straightforward and stable relationships, ML, by enabling the system to learn from data, 

yields better performance when data is large and relationships are complex and/or nonlinear. 

It can identify dominant mechanisms and empirical relationships in large datasets by mapping 

inputs to outputs without attempting to replicate assumed underlying processes, a property 

which has made it a useful method for various engineering applications. 

ML techniques can be grouped into supervised and unsupervised approaches. Supervised 

ML approaches such as regression- and classification-based Artificial Neural Networks (ANN) 

are employed when parameters in data are divided into input and output variables and an 

algorithm is used to learn the mapping function from the input to the output. This is the process 

used in Section 7 to develop predictive models. We know that our output parameter is water 

level (preferably in the sewer network), but we do not know what combination of input 

parameters (for example, rainfall in location A, water level in open channel B, etc.) should be 

used to achieve the best performance, unless we do ‘trial and error’. However, such trial and 

error with supervised ML models is quite difficult and time-consuming. Therefore, our 

alternative is firstly to explore relationships with an unsupervised ML technique, as they are 

faster and less complicated and useful for when relationships between parameters are poorly 

understood and prior knowledge about data (input/output parameters) is unavailable. 

Two common unsupervised ML techniques are Self-Organising Map (SOM) and Principal 

Component Analysis (PCA), but the latter is unable to deal with missing values and nonlinear 

relationships between parameters, while SOM can easily handle both issues (Speight et al., 

2019). SOM is a type of ANN which is suitable specifically for visualizing relationships within 

large datasets, especially in the presence of high-dimensionality, by producing a low-

dimensional (usually two-dimensional) discrete representation of the input space (Kohonen et 

al., 1996).  

Therefore, the following steps are undertaken to analyse the data of drainage system in Hull. 

SOM is firstly applied in Section 6 to explore relationships and correlations between different 

parameters such as rainfall, water level and groundwater level, at various locations. The 

identified relationships will then create the basis for the predictive modelling in Section 7, 

where two supervised ML methods, namely Feedforward Neural Network and Random 

Forests are employed. Random Forests is applied for both classification and regression. 
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Therefore, three predictive models are developed for generating quantitative forecasts of 

water level from historical data of rainfall, water level, and groundwater level. The Feedforward 

model is named ‘Regression FF’, and the classification- and regression-based Random 

Forests models are called ‘Classification RF’ and ‘Regression RF’ throughout this report. 

Figure 5 summarises the methods applied in this study. 

 

Figure 5: ML methods used for qualitative exploration of relationships within data and 

quantitative prediction of water level. 

6. Exploration of Relationships 

6.1 Introduction to SOM 

By using a ‘competitive learning’ approach, SOM produces a nonlinear mapping from an m-

dimensional space of attributes to a two-dimensional lattice of cells or neurons (Kind and 

Brunner, 2013). For the sake of brevity, an example of how to read SOM lattices is presented 

in this section and the readers are referred to the studies listed in the Reference section for 

further study about the technical details of the method. 

As an example, Figure 6 shows the results of training of a SOM model using four years of data 

of rainfall in Cottingham (TS1) and water level in LM03 in the Hull West (TS14). At each 15 

minute interval, total precipitation in the last 6 hours and magnitude of water level at 45 minutes 

in the future are calculated and fed into the model as input parameters. The relationship 

between these two parameters is then presented by SOMs on two-dimensional lattices. On 

the lattices, each cell (neuron) represents a group of observations; the spatial location of a cell 

corresponds to a particular domain or feature drawn from the input space; colours show the 

value of the variables (red: high, blue: low); and each cell in the same position on different 

lattices corresponds to the same group of observations/samples. For this example, SOMs 

show that there is a strong linkage between total precipitation in Cottingham and water level 

in LM03 as water level is high/low in the same positions on the maps where rainfall is high/low 

(high value regions are shown by dashed lines). Note that it does not matter where on the 
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maps the clusters form, but the important point is that the neurons (and patterns) at the same 

position on different maps correspond to the same group of samples in the data. 

 

Figure 6: A simple example of SOMs representing relationship between rainfall in the last 6 

hours at Cottingham TS1 (middle) and water level at 45 minutes in the future in trunk sewer 

LM03 TS14 (right). The map on the left shows the U-matrix. 

In addition to the maps of parameters, SOM provides an additional lattice called unified 

distance matrix, or ‘U-matrix’ (see Figure 6, left). A U-matrix represents the ‘distance’ between 

clusters and determines the strength of them. 

In the above example, the number of parameters was just two. The strength of the SOM 

method is in uncovering relationships in a data with large number of parameters and 

measurements and potentially several nonlinear and complex relationships. 

6.2 SOM analysis of the dataset 

It is easy and fast to test various combinations of data using SOMs. Many combinations of 

rainfall, water level and groundwater level data were tested, and it was tried to understand 

whether and how water level in open channel streams and sewer network are correlated to 

other data. For this purpose, several tests were designed in order to examine relationships in 

raw data, filtered data, or deseasonalised data; based on storm events or data points; for short 

periods of time such as a few months, or for longer periods such as 10 years; using time-

series synchronised in the same time or with time lags between different parameters or 

locations; using combinations with small numbers of parameters/locations, or employing many 

parameters/locations together; and so on. Below, only a few of these analyses are presented 

followed by the most important findings in Section 6.3 which are then used to design the 

predictive models in Section 7. 
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One of the tests was exploring relationships between rainfall in Cottingham and maximum 

water level in the open channel watercourses and the sewer network. This test was based on 

storm events. Firstly, rainfall events were detected, and two rainfall parameters were 

calculated for each event, i) total precipitation (mm) which is sum of rainfall values during the 

event, and ii) maximum rainfall intensity (mm/15mins) which is rainfall peak in the event. Then, 

maximum value of water level in the next 24 hours after rainfall event both in the open channels 

and the sewer network was calculated. Figure 7 shows the process of calculation of input 

parameters. Note that, in this test, water level was deseasonalised as discussed in Section 4; 

therefore, ‘water level’ in this section means water level above baseline rather than water level 

itself. 

 

Figure 7: Design of event-based SOMs. Examples of rainfall events detected by the 

automated rainfall event detection model (black), and a schematic water level rise in the next 

24 hours after a rainfall event (red).  

For rainfall event detection, an automated system was developed which searches over the 

time-series, finds events with total precipitation or maximum intensity above a threshold, and 

then separates the events based on their distance in time, i.e. calculates the dry period 

between two successive events, and if it is below a threshold, they are combined into a single 

event, and if it is above the threshold, then they are kept as two separate events (threshold is 

set to 6 hours in the present analysis). 

Figure 8 shows one of the SOMs for the test. Lattices A and B represent rainfall parameters, 

which are total precipitation and maximum intensity, respectively, in Cottingham (TS1); C to 

G are the maps for five of the open channel watercourses (TS3, TS7, TS8, TS9 and TS2); and 

H to M are maps of water levels in the sewer network (TS12, TS11, TS13, TS14, TS15 and 

TS16). Looking at Lattice A, a cluster of moderate total precipitation (cyan area) forms in the 

shape of a triangle (marked by dashed line), which is also present in the rainfall intensity 

(latices B); while the high rainfall clusters forms in different positions on the maps, i.e. bottom 

left corner on Lattice A and bottom and right sides on Lattice B. Looking at the water level 

maps, some of the open channels show correlation with rainfall, especially at high total 
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precipitations, such as Western Hessle (Lattice G) and Setting Dyke National Ave (Lattice C); 

but they do not show strong linkage with rainfall parameters at moderate values. This could 

be due to that it probably takes longer for open channels to return to their normal level after a 

storm if compared with the sewer network presented in Lattices H to M. Most of the sewer 

network levels show correlation with rainfall at moderate values (triangular shape), too. This 

can be seen, for example, in LM03 and LM04 lattices, where the high water level values not 

only links to high total precipitation in the bottom left corner of Lattice A, but also with moderate 

rainfall values in the triangular shape. These relationships suggest that response of water level 

in the sewer network to the rainfall is fast, i.e. it can go up quickly during an storm and also 

can go down even before end of the storm, while the open channels have probably larger 

time-lags with rainfall. 

 

Figure 8: Relationships between rainfall in Cottingham (Lattices A and B: total precipitation 

and maximum intensity, respectively), water level in open channels (Lattices C to G: TS3, 

TS7, TS8, TS9 and TS2 in Table 1), and water level in sewer network (Lattices H to M: TS12, 

TS11, TS13, TS14, TS15 and TS16) for the data of a period of 10 years, from 1 Jan 2010 to 31 

Dec 2019 (771 rainfall events). 

To examine the possible time lags, therefore, another test was carried out. Since SOM is a 

method for visualising relationships in the data, not quantifying them, this test is done only as 
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a preliminary investigation of time lags between water levels and rainfall, an issue which is the 

objective of the predictive modelling in the Section 7. 

In this test, in contrast to the last one, SOMs are not developed based on storm events. Rather 

than parameters specific to a storm such as maximum water level during a storm event, all 

data points in the water level time-series are used in the training of the SOMs. To include 

rainfall parameters with a lag, an ‘observation window’ is employed over which total 

precipitation is calculated. This window, for each point in the time-series, extends from the 

time of that point to a few hours before it. Figure 9 shows an example of water level profile 

(blue line) and three observation windows for calculating rainfall parameters in the last 2, 12 

and 24 hours before a specific point in the water level time-series. 

 

Figure 9: Design of SOMs based on data points with rainfall observation windows to take 

time lag between rainfall and water level into account. 

Figure 10 shows the result of the test with water levels in four open channel watercourses 

(Lattices J to M) and four locations in the sewer network (Lattices F to I), with total precipitation 

in Cottingham at the same time as well as in the last 2, 12, 24 and 36 hours (Lattices A to E, 

respectively). Looking at Lattices A to E, the high rainfall cluster rotates around the bottom 

right corner with increasing the size of observation window. The dashed circles and red arrows 

in the figure indicate this issue. By comparing the shape and direction of high water level 

clusters in water level maps with the rainfall maps we can find out about the most possible 

time lags between the two. This comparison shows that the sewer network levels correlate 

with the total precipitation with observations window of ~2 hours and open channel levels with 

those of ~2-12 hours. This suggests that the time lag between water level in the sewer network 

and rainfall in Cottingham is probably less than 2 hours, while it could be between 2 and 

several hours in the open channel watercourses.  
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Figure 10: SOMs for exploration of time lags between total precipitation (Lattices A to E) and 

water level in the sewer network (Lattices F to I) and the open channels (Lattices J to M). 

6.3 Summary of SOM analysis 

In addition to the tests presented above, many other tests were performed using SOM which 

are not presented in this report. The major findings of all the tests are summerised as below. 

• Rainfall in Cottingham shows a strong correlation with water level in both the open 

channel watercourses and the sewer network, but the linkage with the latter is more 

significant. 

• Between rainfall parameters (total precipitation and maximum intensity), the former 

shows a stronger linkage with water level in the system. 

• Deseasonalisation of water level time-series improves the correlations indicated by 

SOMs. 

• The best dry period between two successive rainfall events in the automated rainfall 

event detection model is 6 hours for the present data. 
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• Response of sewer network to rainfall is much faster than open channels (below 2 hours 

for sewer network and between 2 and 12 hours for open channels). 

7. Development of Predictive Models 

The aim of this section is to quantify the relationships identified by the SOMs and proposing a 

methodology for water level forecasting based on historical data of rainfall, water level, and 

groundwater level. One of the identified relationships was about the difference between 

response of water level in the sewer network and open channels to rainfall. Therefore, the 

proposed methodology should be tested at least for one open channel watercourse and one 

trunk sewer. The SOMs analyses showed that water level in the trunk sewers responds much 

faster to rainfall. On the other hand, many of the open channel watercourses flow into the 

sewer network. For example, Setting Dyke flows to the sewer network at upstream of LM03, 

and there is no sewer monitor downstream of this connection. These two locations are 

selected as case studies for the purpose of testing the proposed predictive modelling 

approach. Figure 11 shows the location of these two measuring points as well as rainfall gauge 

at Cottingham, and the associated time-series. By using these two case studies, the following 

issues will be investigated/addressed. 

• What time lag exists between rainfall at Cottingham and water level at Setting Dyke and 

LM03. 

• How many hours in the future water level in the sewer network and open channels can 

be forecasted with a reasonable accuracy.  

• Apart from rainfall, inclusion of what other parameters can enhance the predictions of 

water level in the sewer network (how and to what extent use of upstream open channel 

water level and groundwater level may lead to better forecasts). 

• SOMs showed that among rainfall parameters, total precipitation is more significantly 

linked to water level in the system. But how far in the past total precipitation should be 

used to generate the most accurate forecast of water level in the future. 

As discussed in Section 5, data-driven models are developed here based on three 

supervised ML techniques, namely ‘Regression FF’, ‘Classification RF’ and ‘Regression RF’ 

techniques, to address the above questions as well as propose a water level forecasting 

methodology. 
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Figure 11: Water level time-series (blue lines) of the two test cases, a) Setting Dyke (TS3) 

and b) LM03 (TS14) with rainfall at Cottingham (red line); and c) all the three locations on 

the map.  

7.1 Model design 

Output parameter, to be forecasted, is water level in a location where we want to see whether 

flooding occurs, and input parameters could be a range of different parameters such as 

rainfall, water level in the same or other locations, groundwater level, etc, in the past. Figure 

12 shows schematically the definition of input and output parameters for the predictive models. 

Note that in the water level predictions in this section, water level itself is taken into 

consideration rather than water level above baseline as in the event-based SOMs in Section 

6.  

Assume that we are at time 𝑡, and aim at predicting water level in a specific location (an open 

channel stream or the sewer network) 𝑇𝐹 hours in the future, i.e. at 𝑡 +  𝑇𝐹. In this case, output 

parameter is water level at 𝑡 +  𝑇𝐹 and input parameters are rainfall, water level, gradient of 

water level profile, etc, in the last several hours. Therefore, ‘observation windows’ are defined 

for each input parameter over which the variable is determined. For example, total precipitation 

is calculated over the last 𝑇𝑅 hours, i.e. between 𝑡 −  𝑇𝑅 and 𝑡. For other input variables 

different sizes of observation windows are considered:  𝑇𝑀 hours for mean water level and 𝑇𝑆 

hours for the gradient of the water level profile. 

(a) 

(b) 

(c) 
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Figure 12: Input and output parameters for predictive modelling; prediction window (𝑻𝑭) for 

the output parameter (water level) and observation windows for input parameters (𝑻𝑹, 𝑻𝑴 

and 𝑻𝑺 for rainfall, mean water level and gradient of water level profile, respectively). 

The ML algorithms are used to train the model based on historical data, i.e. where both input 

and output parameters are available, and then the trained model is used to predict the output 

parameter for unseen (future) data. For example, suppose that rainfall and water level data 

are available for the past 10 days with a frequency of one hour, i.e. we have 240 data points 

available, and we want to use them to predict water level in the next 2 hours. Firstly, the model 

is trained based on the available 240 data points with for example input parameters such as 

total precipitation in the last 10 hours and mean water level in the last 5 hours; and then the 

model is used to predict the output parameter (water level) 2 hours ahead. In this example, in 

the training process, at each data point, total precipitation is calculated from that point to 10 

points before it (𝑇𝑅 of 10 hours), mean water level is calculated between that point and 5 points 

before it (𝑇𝑀 of 5 hours), and the output parameter is set to the value of water level at two 

points ahead (𝑇𝐹 of 2 hours). The model is trained using this setup and after training it will be 

used for prediction of water level in the future. Therefore, it can be used as a warning system 

that gets values of parameters in the past several hours and gives predictions of water level 

in the next few hours. 

The difference between regression- and classification-based approaches in the present 

application is that the output in the former is actual values of water level while in the latter it is 

classes of water level above or below a threshold. For instance, see Figure 13. It shows an 

example of prediction of 50 days of water level in Setting Dyke (TS3) in 2018 based on training 

of the model using data of about 8 years from 2012 to 2020 with classification and regression 

RF models. The data from 1 Jan 2012 to 30 June 2020 was split into two parts, 1) a period of 

50 days from 1 Mar to 20 Apr 2020 put aside as unseen data to be predicted by model after 

training, and 2) the rest of the data for training the model. Regression RF model predicts actual 

values of water level as shown by red line in Figure 13-left (Regression FF model does the 

same). Classification RF model, instead, predicts whether water level goes above a threshold 

(= -0.1 m in this example) or not, as shown by coloured dots in Figure 13-right. These colour 
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dots show the predictions in classes of Positive and Negative, meaning whether the actual 

water level is above or below the threshold; and True and False, meaning whether they are 

predicted correctly by the model or not. Therefore, the output is divided into four categories of 

True Positive, True Negative, False Positive and False Negative predictions. For example, 

True Negative means actual value of observational data (water level) is below the threshold 

(Negative) and the model predicted it correctly (True). 

In order to evaluate the performance of the models and estimate the accuracy of predictions, 

Root Mean Square Error (RMSE) and Nash-Sutcliffe Model Efficiency Coefficient (NSE) are 

employed as performance metrics for the Regression FF and RF models; and True Positive 

Rate (TRF), False Discovery Rate (FDR), and Matthews correlation coefficient (MCC) are 

applied for the classification RF model. For the definition of the metrics, see Appendix B. 

  

Figure 13: an example of the predictions of water level in Setting Dyke (TS3 in Table 1) by 

the Regression RF model (right) and Classification RF model (left), either to predict actual 

values of water level (right), or whether it goes above a threshold (-0.1 m) or not (left).  

The forecast horizon, which is the length of time into the future at which model can provide 

forecasts, depends on several factors such as the time-lag exists in the actual data between 

different components of the system, for example between rainfall in Cottingham and water 

level in the trunk sewers in Hull; or other factors such as the combination of input parameters 

we use in the model, or the quality of the historical data used to train the model; or the 

performance of the ML techniques. One of the main objectives of this study was to investigate 

these issues for the data of LWWP organisations in Hull. Therefore, in order to examine these, 

test the model, and demonstrate how the model can be applied for water level forecasts, 

modelling the two test cases of Setting Dyke (TS3) and LM03 (TS14) are performed and the 

results are presented in the following sections.  
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7.2 Test case 1: Setting Dyke (TS3) 

Eight years of data was employed to train the model and then it was used to predict water 

level in Setting Dyke for a period of about two weeks in March 2018 for a forecast horizon of 

3 hours. For this analysis, three input parameters were considered: total precipitation in 

Cottingham in the last 𝑇𝑅 hours, gradient of Setting Dyke’s water level profile in the last 𝑇𝑆 

hours, and mean water level in Setting Dyke in the last 𝑇𝑀 hours. Five combinations of these 

input parameters were used to train the model: A) total precipitation, B) total precipitation and 

gradient of water level profile, C) total precipitation, gradient of water level profile and mean 

water level, D) total precipitation and mean water level, and E) mean water level only. The 

input parameter combination with the highest performance metric values was considered to 

be the best option. 

 

Figure 14: Performance metrics calculated for Classification RF (left) and Regression FF 

(right) predictions of Setting Dyke (TS3) water level when different combinations of input 

parameters are employed. 

Figure 14 presents the calculated performance metrics for the combinations of input 

parameters A to E using Classification RF (left) and Regression FF (right) models. According 

to this comparison, the most accurate prediction is when combination C, i.e. total precipitation, 

gradient of Setting Dyke’s water level profile and mean water level in the last several hours, 

are employed as input parameters. Figure 15 shows the predictions when combinations A, C 

and E are employed. When only rainfall is used (Figure 15-left), the time when water level 

starts rising in the prediction matches well with the data, but the value of water level is 

underestimated. When the input parameter is only mean water level (Figure 15-right), the 

predicted profile is smoother and the underestimation is small, but there is a lag of about 2~3 

hours between prediction and data, that means the model is actually not fulfilling the forecast 

of 3 hours. However, when combination C is employed, there is a good agreement between 

prediction and data, which means the model can forecast water level 3 hours in the future with 

Best Best 
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a good accuracy using past values of rainfall in Cottingham and water level in Setting Dyke 

itself. 

 

Figure 15: Predictions made by Regression FF model for water level in Setting Dyke using 

different combinations of input parameters: Combination A (left): only rainfall; Combination 

C (middle): rainfall, mean water level, gradient of water level profile; and Combination E 

(right): mean water level only. 

Sensitivity analyses of observation window size for rainfall, mean water level, and gradient of 

water level profile were carried out. The aim was to find the values of 𝑇𝑅, 𝑇𝑀 and 𝑇𝑆 which give 

the highest accuracy of predictions of Setting Dyke’s water level for a forecast horizon of 3 

hours. Figure 16 shows the result of analysis using Regression RF (left) and Regression FF 

(right) models for the rainfall observation window size. It reveals that the best value of 𝑇𝑅 is 18 

hours for both Regression RF and FF models. In other words, when total precipitation in the 

last 18 hours is used as input, the most accurate prediction for 3 hours in the future is achieved. 

Similar analyses were carried out for 𝑇𝑀 and 𝑇𝑆, and results showed that the best values for 

these two observation windows for Setting Dyke are 6~9 hours and 2 hours, respectively (the 

results are not presented here). 

 

Figure 16: Accuracy of predictions of water level in Setting Dyke three hours in the future 

using different sizes of rainfall observation window, 𝑻𝑹, with Regression RF (left) and 

Regression FF (right) models.  

Sensitivity analysis was also done on the forecast horizon 𝑇𝐹 and the results are presented in 

Figure 17. 𝑇𝐹 values of 1 to 9 hours were tested, and the performance metrics show that, by 

increasing 𝑇𝐹, accuracy of predictions goes down, as expected. However, up to 3 hours, the 

Combination A Combination C Combination E 

Best 

Best 



Living with Water Partnership Catchment Telemetry Integration   

 

20 
 

accuracy of predictions is high. This can also be seen from the profiles of predictions 

presented in Figure 18. It can be concluded that the model can predict water level in Setting 

Dyke up to 3 hours in the future with a good accuracy; and allowing for some uncertainties, it 

can predict it up to 4 hours. 

 

Figure 17: Accuracy of predictions of water level at Setting Dyke for different forecast 

horizons 𝑻𝑭 using Regression RF (left) and Regression FF (right) models. 

 

Figure 18: Setting Dyke water level prediction using Regression FF model for different 

forecast horizons, 𝑻𝑭. Black: actual data; green: prediction. 

𝑇𝐹 = 3 hours 𝑇𝐹 = 4 hours 

𝑇𝐹 = 6 hours 𝑇𝐹 = 9 hours 
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7.3 Test case 2: LM03 trunk sewer (TS14) 

From the SOM analysis in Section 6, we expect a smaller forecast horizon for trunk sewers in 

Hull than open channel watercourses. For this test, forecast horizon 𝑇𝐹 is set to 45 minutes 

and then sensitivity analyses on the size of observation windows of total precipitation at 

Cottingham (𝑇𝑅) and gradient of LM03’s water level profile (𝑇𝑆) are performed. The most 

accurate predictions were achieved using 𝑇𝑅 and 𝑇𝑆 values of 6~8 and 1~2 hours (depending 

on the LM model applied for predictions), respectively. 

The inclusion of additional input parameters, such as mean water level at LM03 itself or at 

upstream open channels, and groundwater level is discussed in the following. 

Figure 19 presents predictions of water level at LM03 45 minutes in the future using two 

different combinations of input parameters using the Regression FF model. The left figure is 

when past values of total precipitation at Cottingham and the gradient of LM03’s water level 

profile are employed as input parameters to train the model, and the right figure shows the 

prediction when mean water level is also included. Adding mean water level makes the output 

smoother and closer to the observed data at higher values, but it creates a time lag between 

prediction and data, i.e. slightly reduces the prediction window (by about 15 minutes in this 

test). This is probably because the change of water level in the sewer network is quite fast. 

Therefore, mean water level at LM03 is not considered as an input for water level predictions 

in LM03. 

 

Figure 19: prediction of LM03’s water level using Regression FF model, 45 minutes in the 

future; left: with input parameters of total precipitation at Cottingham and gradient of LM03’s 

water level profile; and right: including mean water level at LM03 as well. 

In a new test, mean water level at Setting Dyke in the last 6 hours, as an open channel 

upstream to LM03, is employed as an additional input parameter for the prediction of water 

level at LM03. Figure 20 presents the results of predictions using Regression RF model with 

and without Setting Dyke’s mean water level as input. As seen, especially in the graphs (c) 

and (d) where both cases are compared, when mean water level at Setting Dyke is added 
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(blue line), not only the falling limb of the event is predicted with a higher accuracy, but also 

the rising limb, where water level starts rising, is also estimated more accurately, resulting in 

a smaller gap between prediction and data. This has improved the forecast horizon by about 

15 minutes. 

 

Figure 20: prediction of LM03’s water level 45 minutes in the future using Regression RF 

model with and without mean water level at Setting Dyke as an input parameter. a) input 

parameters: total precipitation at Cottingham and gradient of LM03’s water level profile; b) 

the same parameters plus Setting Dyke’s mean water level; c) and d) comparison of profiles 

in the rising and falling limbs of the event shown by dashed lines in plots (a) and (b). 

Two tests were performed to examine the inclusion of groundwater level data as input for 

prediction of water level in LM03. Mean groundwater level data at Cottingham Willerby Hill 

and Cottingham North Houses (TS4 and TS5, respectively, in Table 1) were used and 

compared. In this case, input paramters are total precipitation at Cottingham, gradient of 

LM03’s water level profile, and groundwater level at Willerby Hill in one test, and groundwater 

level at North Houses in another test, to predict water level 45 minutes in the future. The results 

are presented in Figure 21. This comparison shows that no improvement is achieved as a 

result of adding North Houses groundwater level, but Willerby Hill groundwater level improves 

the forecast horizon by around 10-15 mins. 

(a) 

(b) 

(c) (d) 
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Figure 21: a) comparison of predictions of LM03 using Regression RF model with and 

without groundwater level data; b) and c) the rising and falling limbs of the event marked by 

I and II. Black line: data; blue line: no groundwater level data; red line: with Willerby Hill 

groundwater level (TS4); and green line: with North Houses groundwater level (TS5). 

A sensitivity analysis was done on the size of prediction window (forecast horizon) to see how 

far in the future the water level at LM03 can be predicted. Based on the analyses presented 

above, input parameters were set to total precipitation at Cottingham in the last 6 hours, 

gradient of the water level profile in LM03 in the last 1.5 hours, mean water level at Setting 

Dyke in the last 6 hours, and mean groundwater level at Willerby Hill in the last 1 hour, to 

predict water level in LM03 with different sizes of prediction window 𝑇𝐹.  

 

Figure 22: Accuracy of predictions of LM03’s water level using different sizes of prediction 

window 𝑻𝑭 (forecast horizon) using Regression FF (left) and Regression RF (right) models. 

The result is presented in Figures 22 and 23, where performance metrics for Regression RF 

and FF models, and predictions using different 𝑇𝐹 values by the RF model are shown, 

respectively. As expected, by increasing 𝑇𝐹, accuracy of prediction decreases. However, this 

decrease occurs very slowly when the forecast horizon is below one hour. It is concluded that 

I II 

I 

II 

(a) (b) (c) 
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the model can forecast water level in LM03 up to 45 mins in the future with a good accuracy, 

and allowing for some uncertainty, it can predict it up to 1 hr. 

 

Figure 23: Predictions of LM03’s water level profile using Regression RF model with 

different sizes of prediction window 𝑻𝑭. 

7.4 Summary of the predictive models 

Predictive models were developed based on both classification-based and regression-based 

ML algorithms. The model was tested for two case studies: prediction of water level in an open 

channel watercourse (Setting Dyke) and a trunk sewer (LM03) in Hull. Various combinations 

of input parameters such as rainfall, gradient of water level profile, mean water level in the 

same and/or another location, and groundwater level data, were tested. Sensitivity analyses 

on the sizes of observation windows for these parameters, i.e. the period in the past over 

which they should be determined as input for the predictions, were performed; and finally, the 

best prediction windows, i.e. how far in the future water level in these two watercourses can 

be predicted were estimated. The following points are concluded: 

• The model can generate forecasts for individual locations based upon historical rainfall, 

water level, slope of water level change, and groundwater level data. 

• The farthest in the future water level can be predicted with a good accuracy is 3~4 hours 

for Setting Dyke (open channel) and 45~60 minutes for LM03 (sewer).  

𝑇𝐹 = 0.5 hour 𝑇𝐹 = 0.75 hour 

𝑇𝐹 = 1 hour 𝑇𝐹 = 2 hours 
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• The best combination of investigated input parameters for water level forecasts in Setting 

Dyke are rainfall at Cottingham, and mean water level and gradient of water level profile 

in Setting Dyke itself. The best observation windows for these parameters, i.e. 𝑇𝑅, 𝑇𝑀 

and 𝑇𝑆 are 18, 6~9 and 2 hours, respectively. 

• The best combination of investigated input parameters for water level forecasts in LM03 

are rainfall at Cottingham, gradient of water level profile in LM03 itself, mean water level 

profile in Setting Dyke, and groundwater level in Willerby Hill. The best observation 

windows for these parameters, are 6, 1.5, 6, and 1 hour, respectively. 

8. Implementation of Model 

The developed predictive models can be applied as an early warning tool for the two locations 

tested in this study, i.e. Setting Dyke and LM03. The models should be trained based on 

historical data, and then fed into by values of rainfall, water levels, and groundwater levels in 

the preceding several hours to predict water level 3 hours and 45 minutes in the future, 

respectively. 

The model codes (in MATLAB R2019b) are provided along with relevant User Guides. The 

codes include the model for filtering data (as described in Section 4), the SOM model for 

exploration of relationships (as described in Section 6), and the predictive models (described 

in Section 7). The input/output set-up for the forecasts in Setting Dyke and LM03 should be 

defined based on the sensitivity analyses performed in Section 7.2 and 7.3. For real-time 

applications, the model should be fed into by relevant data in real-time. If there is a change in 

the system, the model should be trained and calibrated for the new condition. 

To apply the model for other locations, such as other trunk sewers or open channels, the 

model should be trained based on their own historical data. Then, it can be used for prediction 

of water level in the new locations. 

For replication of the approach for other regions, the model should be set up and trained based 

upon their local system data; sensitivity analyses on input/output parameters, ML 

hyperparameters, size of observation windows and prediction windows should be carried out; 

and the model should be tested with relevant case studies before being used for water level 

forecasts. 

To improve efficiency and applicability of the model, a flood risk model can be incorporated 

into the model to be able to estimate risk of exceedance of water level triggers. This risk 

calculation could be done by predicting exceedance probabilities for a range of rainfall values 
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and combining those probabilities with the rate of occurrence of the critical rainfall (e.g., rainfall 

corresponding to flooding with a probability of 60%). 

9. Overall Summary and Conclusions 

A large amount of data of rainfall, water level and groundwater level across Hull and the 

surrounding area was collected from the project partners (HCC, YW, EA, and ERYC) to study 

the relationships between different elements of the drainage system in Hull. The data was 

cleansed and combined into a single dataset. ML algorithms were used to explore the 

relationships within the data and develop predictive models which can be employed as a 

warning tool. Predictive models forecast water level in the future using past values of rainfall, 

water level and groundwater level. The model was tested for two locations, Setting Dyke (open 

channel) and LM03 (trunk sewer). The results of analysis showed that the farthest in the future 

water level can be predicted with a good accuracy is 3~4 hours for Setting Dyke and 45~60 

minutes for LM03. The project, by the data analyses performed as well as the collaborations 

with the project partners through the data collection process and meetings and workshops, 

had the following outcomes. 

• A better understanding of the existing telemetry network across the study area. 

• Clarity on the variability of quality of data and physical parameters. 

• Identification of important relationships between network elements. 

• Better use of current systems and evidence to support future funding investments. 

• Improved flood resilience to the area through development of an early warning tool. 

• Demonstration of the value of combining and sharing data among the different LWWP 

partners, along with the value of data-driven methods to help understand the behaviour 

of complex systems. 

The output of the project is a ML water level predictive system which can be used as an early 

warning tool for predicting water level exceedance above defined thresholds. The model can 

be used for water level forecasts in Setting Dyke and LM03. The approach can be replicated 

for other areas given that the historical data is available, and the model is trained and tested 

for that system. 

Telemetry data in Hull (and many other similar areas in the country) are collected and stored 

by water organisations who use it for their individual use, with limited sharing of data between 

them. By collecting data in a more systematic way, and incorporating ‘flood risk’ modelling into 

the system in the future studies, it could then be used for more informed decision makings. 
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For short-term operational decisions, trigger values of total precipitation and water levels at 

specific locations could be used to identify immediate risks to the system. For strategic level 

decisions, a large area could be assessed for overall risk of water level exceedance above 

defined thresholds under typical high-rainfall conditions, supporting maintenance prioritisation 

and related decisions. 
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Appendix A 

A list of data provided by the project partners from monitoring stations across Hull and East 

Riding of Yorkshire is presented in Table A below. Figure A shows the location of the stations. 

Note that not all the stations are shown on the map since coordinates of some of them are not 

available. 

Table A: a full list of data provided by project partners. 

No Organisation Location/Tag Type Easting Northing 

1 EA Anlaby Groundwater level 503305 427903 

2 EA Bentley Groundwater level 501895 435936 

3 EA Cherry Tree Cottage Groundwater level 504346 438565 

4 EA Cottingham North Houses Groundwater level 505000 435000 

5 EA Cottingham Willerby Hill Groundwater level 502281 431806 

6 EA Dunswell Groundwater level 507500 435500 

7 EA East View Groundwater level 505300 434400 

8 EA Ella Cross Roads Groundwater level 500500 430200 

9 EA Ennerdale Groundwater level 508191 434303 

10 EA Hampston Hill Groundwater level 505400 437000 

11 EA Harland Rise Groundwater level 503100 433600 

12 EA Hollycroft Groundwater level 504300 437400 

13 EA Ideal Standard Groundwater level 506747 429952 

14 EA Kenley Reach Thearne Groundwater level 507285 437161 

15 EA Little Weighton Groundwater level 498728 433854 

16 EA Meeting House Cott Groundwater level 505200 433500 

17 EA Mount Pleasant Groundwater level 500595 440113 

18 EA N Houses Cottingham Groundwater level 505165 435151 

19 EA N Moor House Chalk Groundwater level 504900 435000 

20 EA North Houses Drift Groundwater level 505165 435151 

21 EA Northlands Groundwater level 498661 438281 

22 EA Poplar Farm Groundwater level 503600 435600 

23 EA Ralph Nook Groundwater level 499801 433899 

24 EA Sunnydene Plaxton Br Groundwater level 506461 436432 

25 EA Swift Caravans Groundwater level 505100 433900 

26 EA Walkington Groundwater level 499500 437800 

27 EA Walkington Wold Groundwater level 497540 436351 

28 EA Westwood Groundwater level 502009 437969 

29 EA Willerby Haggs Groundwater level 503240 431197 

30 EA Willerby Hill Groundwater level 502281 431806 

31 EA Wood Farm Cottingham Groundwater level 505500 434300 

32 EA Beverley Shipyard Open channel water level 505397 439744 

33 EA Brough West Clough Open channel water level 496296 424617 

34 EA Dunswell Ennerdale Bridge Open channel water level 508191 434303 
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35 EA East Hull Hedon Road Open channel water level 513097 429300 

36 EA Hempholme Weir Open channel water level 507957 449913 

37 EA Hessle Western Drain Open channel water level 503295 427583 

38 EA Hull Barrier Open channel water level 510194 428354 

39 EA Hull High Flags Open channel water level 509998 429679 

40 EA Setting Dyke (Birdsall Avenue) Open channel water level 505013 430528 

41 EA Setting Dyke (National Avenue) Open channel water level 506692 430535 

42 EA Paull Open channel water level 516516 426331 

43 EA Scurf Dyke Open channel water level 507851 450592 

44 EA Stone Ferry Bridge Open channel water level 510153 431427 

45 EA Wilfholme Ps Barmston Open channel water level 506211 447044 

46 EA Cottingham Rainfall 504791 434188 

47 ERYC Acre Head Drain Open channel water level 504260 427591 

48 ERYC Acre Heads Drain Hull Rd Open channel water level 503978 428781 

49 ERYC Astral Close Screen Open channel water level 503670 427320 

50 ERYC Atwick Village Drain Open channel water level 518940 450847 

51 ERYC Bh5 Washdyke Bridge Open channel water level 514513 446063 

52 ERYC Bilton Open channel water level 517221 432531 

53 ERYC Bond Street Open channel water level 520005 428424 

54 ERYC Bowlams Dike Open channel water level 510797 444740 

55 ERYC Broomfleet Open channel water level 487449 425601 

56 ERYC Burstwick Drain - Hedon Open channel water level 518722 428074 

57 ERYC Carr Lane Open channel water level 504525 430544 

58 ERYC Cascade Open channel water level 506764 430530 

59 ERYC Dutch River Open channel water level   

60 ERYC Filling Station Open channel water level 501883 431012 

61 ERYC Fleet Drain Open channel water level 503788 426223 

62 ERYC Great Gutter Lane Open channel water level 502128 430615 

63 ERYC Hessle Haven Open channel water level 503331 425829 

64 ERYC Hilderthorpe Screen Open channel water level 517840 466762 

65 ERYC Hollym Screen Open channel water level 534642 425048 

66 ERYC Hook Drain Goole Open channel water level   

67 ERYC Hornsea Allotment Track Open channel water level 519978 446713 

68 ERYC Hornsea Burton Road Open channel water level   

69 ERYC Hornsea Mere Open channel water level 519838 447210 

70 ERYC Inmans Estate Open channel water level   

71 ERYC Meaux Bridge Hold Drain Open channel water level   

72 ERYC Monk Dike Open channel water level   

73 ERYC N Frodingham Open channel water level   

74 ERYC Nelson St Pier Open channel water level 510003 428090 

75 ERYC Plaxton Bridge Open channel water level 506611 436548 

76 ERYC Pocklington Open channel water level 481162 450628 

77 ERYC Preston Open channel water level   

78 ERYC R Hull - Beverly Beck Open channel water level 505725 439367 

79 ERYC Rawdale Lagoon Open channel water level 500905 430522 
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80 ERYC Reedness Village Open channel water level   

81 ERYC River Derwent Open channel water level   

82 ERYC River Foulness Open channel water level   

83 ERYC River Hull Beverly Beck Open channel water level 505711 439360 

84 ERYC River Ouse Open channel water level   

85 ERYC Robson Cottage Lagoon Open channel water level 501682 430683 

86 ERYC Rudston Open channel water level   

87 ERYC Skirlaugh Open channel water level 514217 439770 

88 ERYC South Cave Open channel water level   

89 ERYC Stone Creek Open channel water level   

90 ERYC Thornham Close Open channel water level 491669 430868 

91 ERYC Tranby Lagoon Open channel water level 504220 427780 

92 ERYC Wassand Estate Open channel water level 517190 446531 

93 ERYC Well Lane Open channel water level 503450 430685 

94 ERYC West of Seaton Open channel water level   

95 ERYC Western Drain Culvert Open channel water level 503511 427633 

96 ERYC Willy Howe Wold Newton Open channel water level 507137 472524 

97 ERYC Albion Mills - Willerby Rainfall   

98 ERYC Bridlington Rainfall 518322 469291 

99 ERYC Brough Rainfall 493552 428361 

100 ERYC Brough Rain Gauge Rainfall 493552 428361 

101 ERYC Driffield Showground Rainfall 501928 456714 

102 ERYC Elloughton Rainfall   

103 ERYC Goole Rainfall   

104 ERYC Hedon Rainfall   

105 ERYC Hessle Rain Gauge Rainfall   

106 ERYC Lock Hill Goole Rainfall 474703 423449 

107 ERYC Market Weighton Rainfall 486735 441961 

108 ERYC Nafferton Rain Gauge Rainfall 505537 459366 

109 ERYC Pocklington Rainfall 481054 450650 

110 ERYC Tranby Lagoon Rainfall 504220 427780 

111 ERYC Willow Grove Screen Rainfall 502779 439805 

112 ERYC Willy Howe Wold Newton Rainfall 507026 472544 

113 ERYC Withernsea Rain Rainfall   

114 HCC Cottingham Open channel water level 506014 433953 

115 HCC Counter Dyke Open channel water level 507374 434351 

116 HCC Hessle Road Open channel water level 504504 426595 

117 HCC Sand Dyke Open channel water level 504221 429705 

118 HCC North Bridge Rainfall 510247 429253 

119 YW Beverley Rainfall 505412 441904 

120 YW Beverley Rural (N) Rainfall 492109 438985 

121 YW Beverley Rural (S) Rainfall 498903 437192 

122 YW Bransholme Rainfall 507447 434094 

123 YW Bridlington Rural Rainfall 517030 463539 

124 YW Central (Haltemprice) Rainfall 500229 430210 
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125 YW Cottingham Rainfall 506366 434055 

126 YW Driffield Rainfall 501816 459364 

127 YW Driffield Rural Rainfall 485096 457475 

128 YW Gilberdyke Rural Rainfall 477570 436739 

129 YW Hedon Rainfall 515579 427710 

130 YW Hornsea Rainfall 520129 450189 

131 YW Hornsea Rural Rainfall 507304 447572 

132 YW Hull East Rainfall 508957 432835 

133 YW Hull West Rainfall 508056 427051 

134 YW Market Weighton Rainfall 484099 440606 

135 YW North Ferriby Rainfall 496973 432725 

136 YW Pocklington Rural Rainfall 483690 456832 

137 YW South Cave Rainfall 492109 438985 

138 YW Withernsea Rainfall 533173 429519 

139 YW Withernsea Rural Rainfall 521236 434070 

140 YW Beverley Road Sewer water level 508363 431688 

141 YW Boothferry Road Wet Well Sewer water level 503452 427346 

142 YW Burma Drive Wet Well Sewer water level 513527 429783 

143 YW Capstan Road Sewer water level 508186 433761 

144 YW Cliff Bridge Wet Well Sewer water level 502530 425550 

145 YW Compass Road Wet Well Sewer water level 508556 433659 

146 YW Cottingham George St Sewer water level 504349 433008 

147 YW Dawson House Manhole Sewer water level 508363 431688 

148 YW Dunscombe Park Wet Well Sewer water level 510828 430552 

149 YW Ferry Rd CSO Sewer water level 503397 426056 

150 YW Hull Anlaby CSO Sewer water level 503987 428763 

151 YW Lm01 Hull Central Sewer water level 502909 428638 

152 YW Lm02 Hull West Sewer water level 506563 431909 

153 YW Lm03 Hull West Sewer water level 509415 429239 

154 YW Lm04 Hull East Sewer water level 510791 429472 

155 YW Lm05 Hull East Sewer water level 512969 430919 

156 YW Lm06 Hull East Sewer water level 514082 431346 

157 YW Needlers Way Wet Well Sewer water level 509416 430835 

158 YW Swanland Sewer water level 500433 427678 

159 YW Tudor Court Sewer water level 502333 430168 
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Figure A: location of monitoring stations across Hull and East Riding of Yorkshire for which 

data is listed in Table A. 
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Appendix B 

The metrics used for assessing performance of the predictive algorithms in Section 7 are 

defined as in Equations (B1) to (B5). Root Mean Square Error (RMSE) and Nash-Sutcliffe 

Model Efficiency Coefficient (NSE) are employed for the Regression FF and RF models; and 

True Positive Rate (TRF), False Discovery Rate (FDR), and Matthews correlation coefficient 

(MCC) are applied for the classification RF model. 

 𝑅𝑀𝑆𝐸 = √∑
(𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑑𝑎𝑡𝑎)

2

𝑁
 (B1) 

 𝑁𝑆𝐸 = 1 −
∑(𝑌𝑃𝑟𝑒𝑑 − 𝑌𝑑𝑎𝑡𝑎)2

(�̅�𝑑𝑎𝑡𝑎 − 𝑌𝑑𝑎𝑡𝑎)2
 (B2) 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (B3) 

 𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 (B4) 

 𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (B5) 

where 𝑌𝑑𝑎𝑡𝑎 and 𝑌𝑝𝑟𝑒𝑑 are the actual (observed) and predicted values, respectively; �̅�𝑑𝑎𝑡𝑎 is 

the mean of observational data; 𝑁 is the number of data points in the part of time-series which 

is predicted; 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 are True Positive, True Negative, False Positive and False 

Negative, respectively. 𝑇𝑃𝑅 represents the probability that the model will correctly predict 

positive class values (water level above threshold); 𝐹𝐷𝑅 represents the probability a model 

predicts a positive when in reality no such event occurred, also known as a false alarm (Meyers 

et al., 2017); and 𝑀𝐶𝐶 is a measure of summarising performance even when there is a skew 

in class sizes (Baldi et al., 2000). It is noted that in the analysis in Section 7.2 and 7.3, for the 

Classification RF model, 1 − 𝐹𝐷𝑅, and for the Regression RF and FF models, 1 − 𝑅𝑀𝑆𝐸 are 

employed instead of 𝐹𝐷𝑅 and 𝑅𝑀𝑆𝐸 in order to be consistent with other metrics (i.e. having 1 

for the best performance and 0 for the worst performance for all metrics), because perfect 

match with data corresponds to a 𝐹𝐷𝑅 and 𝑅𝑀𝑆𝐸 of 0, while to the value of 1 for other metrics. 

Also note that for the Regression RF and FF models, 1 − 𝑅𝑀𝑆𝐸 and 𝑁𝑆𝐸 are calculated not 

only for the entire water level profile in the predicted section, but also for a subset of data 

above a threshold (e.g., -0.25 m in the tests in Section 7.1), because most part of the profile 
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is at a constant water level which is around the normal level of the channel. Only sometimes 

water level goes up due to rainfall. Therefore, using the part above a threshold above the 

normal level will give us a better metric of accuracy of the predictions. 
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